วันพุธที่ 12 กันยายน พ.ศ. 2555


  • คลื่นเสียง

    การสั่นและคลื่นเสียง
    SHOCK  WAVES หรือ ชอร์กเวฟ
              ชอร์กเวฟเกิดขึ้นจากแหล่งกำเนิดคลื่นเคลื่อนที่ได้เท่ากับความเร็วของคลื่นหรือเร็วกว่า  จะเกิดปรากฎการณ์ที่ว่าสันคลื่นไม่สามารถที่จะเคลื่อนที่ออกไปจากแหล่งกำเนิดเสียง โดยถ้าแหล่งกำเนิดเคลื่อนที่ได้เท่ากับความเร็วของคลื่น   สันคลื่นจะเกิดการซ้อนกัน  เสริมกันกลายเป็นแอมพลิจูดขนาดใหญ่เรียกว่า  ชอร์กเวฟ    และเมื่อแหล่งกำเนิดคลื่นเคลื่อนที่เร็วกว่าคลื่น  สันคลื่นจะฟอร์มตัวเป็นรูปกรวย  โดยมีมุม    =  sin-1(v/u)    อัตราส่วน  u/v  เรียกว่า เลขมัค  (Mach number)     ชอร์กเวฟเกิดขึ้นได้บ่อยมากในสถานการณ์ต่างๆกัน  ดังเช่น  โซนิกบูม  คือ ชอร์กเวฟประเภทหนึ่งของเครื่องบินที่วิ่งเร็วเหนือเสียง    คลื่นที่เกิดหลังเรือเร็วก็เป็นชอร์กเวฟอีกประเภทหนึ่ง    นอกอวกาศก็สามารถจะเกิดชอร์กเวฟได้  อย่างเช่น ลมสุริยะที่วิ่งด้วยความเร็วสูงเข้าชนสนามแม่เหล็กโลก  เป็นต้น
    a)  เมื่อแหล่งกำเนิดเสียงเคลื่อนที่ด้วยความเร็วเท่ากับความเร็วของคลื่น  สันคลื่นจะรวมกันอยู่ที่ยอดก่อให้เกิดชอร์กเวฟขึ้น  b)  ชอร์กเวฟเกิดขึ้นได้อีกกรณีหนึ่งเมื่อความเร็วของแหล่งกำเนิดเสียง u  มากกว่าความเร็วของคลื่น v  ในช่วงระยะเวลา หน้าคลื่นจะเคลื่อนที่ได้เป็นระยะ   แต่แหล่งกำเนิดคลื่นเคลื่อนที่ได้ระยะทางมากกว่า คือ         ชอร์กเวฟจะฟอร์มตัวเป็นรูปกรวย  โดยมีมุม   =  sin-1(v/u) 
       ค ลื่ นเ สี ย ง    
     
                  เสียงเกิดจาก การสั่นของวัตถุ เราสามารถทำให้วัตถุสั่นด้วยวิธีการ ดีด สี ตีและเป่า เมื่อแหล่งกำเนิดเสียงเกิดการสั่น จะทำให้โมเลกุลอากาศสั่นตามไปด้วยความถี่เท่ากับการสั่นของแหล่งกำเนิดเสียง เกิดเป็นช่วงอัดช่วงยายของโมเลกุลของอากาศ ซึ่งพลังงานของการสั่นจะแผ่ออกไปรอบๆแหล่งกำเนิดเสียง ตรงกลางส่วนอัดและตรงกลางส่วนขยายโมเลกุลอากาศจะไม่มีการเคลื่อนที่(การกระจัดเป็นศูนย์) / แต่ตรงกลางส่วนอัดความดันอากาศจะมากและตรงกลางส่วนขยายความดันอากาศจะน้อยมาก ดังนั้นคลื่นเสียงจึงเป็นคลื่นตามยาวเพราะโมเลกุลของอากาศจะสั่นในทิศเดียวกับทิศที่เสียงเคลื่อนที่ไป ความดังของเสียงจะขึ้นอยู่กับช่วงกว้างของการสั่น(แอมปลิจูด) ถ้าแอมปลิจูดมากเสียงจะดังมาก การเปลี่ยนความดันอากาศนี้สามารถเคลื่อนที่ไปข้างหน้า จนถึง หูของ ผู้ฟังทำให้ได้ยินเสียง
    รูปแสดงการเกิดคลื่นเสียงจากการสั่นของสายกีต้า เพียง 1 ทิศทาง  
    แหล่งกำเนิดคลื่นเคลื่อนที่ด้วยความเร็วเท่ากับความเร็วเสียง
    source  =   v  sound    (Mach 1  )  จ่อที่กำแพงเสียง
           เมื่อแหล่งกำเนิดเสียงเคลื่อนที่ด้วยความเร็วเท่าเสียง   (v s  =  v หรือ Mach  1  )   หน้าคลื่นทางขวาจะถูกอัดกันอยู่ทางด้านหน้า เป็นแนวเส้นโค้ง  ทำให้หน้าคลื่นเกิดการแทรกสอดแบบเสริมกัน  ความดันของคลื่นเพิ่มขึ้นอย่างมากมาย   เรียกว่า คลื่นกระแทก  ( shock wave)   
    ภาพบนคือลูกปืนที่วิ่งด้วยความเร็ว Mach 1.01  จะเห็นคลื่นกระแทกเป็นแนวโค้งหน้าลูกปืนอย่างชัดเจน  
     
    ชัค เยเกอร์ มนุษย์ผู้ฝ่ากำแพงเสียง
    ประสบอุบัติเหตุ
           เพียง วันก่อนขึ้นบินทดลองฝ่ากำแพงเสียง  ร้อยเอก ชัค เยเกอร์  แห่งกองทัพอากาศสหรัฐฯ ก็ประสบอุบัติเหตุจากการขี่ม้าจนกระดูกซี่โครงหัก ซี่  และถูกกระแทกจนเกือบหมดสติ   ตอนเช้าวันที่ 14 ตุลาคม ค.. 1947  ซึ่งเป็นวันรุ่งขึ้นหลังจากวันที่ประสบอุบัติเหตุ  หมอใช้เทปพันรอบตัวเขาเพื่อดามซี่โครงที่หักนั้นไว้ชั่วคราว  แขนขวาของเขาก็ยังปวดจนใช้การไม่ได้  แต่หากเขาปล่อยให้เจ้าหน้าที่กองทัพอากาศรู้เรื่องนี้เข้า  การบินทดลองซึ่งเป็นความลับสุดยอดครั้งนี้จะต้องเลื่อนออกไปทันที
          




  • คลื่นแสง 




    ภาพนี้คัดลอกมาจาก Nick Strobel's Astronomy Notes, http://www.astronomynotes.com/,
    copyright 1998-2002 by Nick Strobel.



วันศุกร์ที่ 27 กรกฎาคม พ.ศ. 2555

ทฤษฎีจลน์ของแก๊ส


ความร้อน
-พลังงานความร้อน
-พลังงานความร้อนกับการเปลี่ยนสถานะของสาร
-สมดุลความร้อน
-การถ่ายเทความร้อน
-สมบัติของแก๊สในอดมคติ
-กฎของบอยด์(Robert Boyle)
-กฎของชาร์ล(Charles’s law)
-กฎของเกย์-ลูกแซก(Gay-Lussac’s law)
-แบบจำลองของแก๊ส
-ทฤษฎีจลน์ของแก๊ส
-การหาอุณหภูมิผสมและความดันผสมจากทฤษฎีจลน์ของแก๊ส
-พลังงานภายในระบบ
-การประยุกต์
-ตัวอย่างการคำนวณ

ทฤษฎีจลน์ของแก๊ส



ก๊าซจำนวนหนึ่งมีความดัน 275 กิโลนิวตัน ปริมาตร 0.09 ลูกบาศก์เมตรและอุณหภูมิ 185 องศาเซลเซียส ถ้าเกิดการเปลี่ยนแปลงสภาวะที่มีความดันคงที่จนอุณหภูมิลดลงเหลือ 15 องศาเซลเซียส จงหาปริมาณความร้อนและงานที่ใช้โดยกำหนดให้ค่าคงที่เฉพาะของก๊าซ R = 0.29 kJ/kg-K
  • ความดันขึ้นอยู่กับแรงที่กระทำระหว่างภาชนะกับโมเลกุลจากการชน*
สมมติให้มีแก๊ส N โมเลกุล แต่ละโมเลกุลมีมวล m อยู่ในภาชนะลูกบาศก์ยาวด้านละ l ปริมาตร V

ถ้าแก๊สโมเลกุลหนึ่งกำลังเคลื่อนที่ไปด้วยความเร็วตามแกน x เป็น v_x ไปชนกับภาชนะ เนื่องจากเป็นการชนแบบยืดหยุ่นสมบูรณ์ ความเร็วหลังชนจึงเป็น -v_x โมเมนตัมที่เปลี่ยนไปเป็น 2mv_x
แรงที่ผนังกระทำต่อแก๊ส
F=\frac{\Delta P}{\Delta t}
เวลานับจากที่แก๊สชนภาชนะด้านหนึ่งกลับมาชนที่เดิมอีกครั้งเป็น 2l\over v_x
\frac{\Delta P}{\Delta t}=\frac{2mv_x}{\frac{2l}{v_x}}=\frac{mv_x^2}{l}
มีแก๊ส N โมเลกุล
\sum F_x=\sum_i{\frac{mv_{xi}^2}{l}}
ความดัน P_x=\frac{F}{A}=\frac{\frac{m}{l}\sum_i{v_{xi}^2}}{l^2}=\frac{m}{V}\sum_i{v_{xi}^2} เนื่องจากแก๊สเคลื่อนที่ในสามมิติ ความเร็ว v จะได้
v^2=v_x^2+v_y^2+v_z^2
จะได้ว่า
\frac{m}{V}\sum_i{v_{i}^2}=\frac{m}{V}\sum_i{v_{xi}^2}+\frac{m}{V}\sum_i{v_{yi}^2}+\frac{m}{V}\sum_i{v_{zi}^2}
\frac{m}{V}\sum_i{v_{i}^2}=P_x+P_y+P_z
เนื่องจากเป็นแก๊สในภาชนะเดียวกัน ความดันตามแนว x y z เท่ากันและเท่ากับความดันของแก๊ส
P_{gas}=P_x=P_y=P_z=\frac{1}{3}\frac{m}{V}\sum_i{v_{i}^2}
ให้ v_{rms}^2 เป็นค่าเฉลี่ยกำลังสองของความเร็ว ซึ่งได้จาก
v_{rms}^2=\frac{v_1^2+v_2^2+...+v_N^2}{N}=\frac{1}{N}\sum_i{v_{i}^2}
Nv_{rms}^2=\sum_i{v_{i}^2}
P_{gas}=\frac{mNv_{rms}^2}{3V}
P_{gas}=\frac{1}{3}\rho v_{rms}^2
เมื่อ \rho คือความหนาแน่นของแก๊ส
หรือ จาก P_{gas}=\frac{mNv_{rms}^2}{3V}
PV=\frac{mNv_{rms}^2}{3}
PV=\frac{2}{3}N (\frac{1}{2}mv_{rms}^2)
PV=\frac{2}{3}N\cdot E.K.
ก๊าซจำนวนหนึ่งมีความดัน 275 กิโลนิวตัน ปริมาตร 0.09 ลูกบาศก์เมตรและอุณหภูมิ 185 องศาเซลเซียส ถ้าเกิดการเปลี่ยนแปลงสภาวะที่มีความดันคงที่จนอุณหภูมิลดลงเหลือ 15 องศาเซลเซียส จงหาปริมาณความร้อนและงานที่ใช้โดยกำหนดให้ค่าคงที่เฉพาะของก๊าซ R = 0.29 kJ/kg-K


สมบัติของคลื่น

คลื่นกล
-การจำแนกคลื่นกล
-คลื่นกับการส่งผ่านพลังงาน
-คลื่นบนเส้นเชือกและผิวน้ำ
-ส่วนประกอบของคลื่น
-อัตราเร็วของคลื่น
-การบอกตำแหน่งของการเคลื่อนที่แบบคลื่น
-ถาดคลื่น
-หน้าคลื่น
-คลื่นดลและคลื่นต่อเนื่อง
-การซ้อนทับของคลื่น
-สมบัติของคลื่น
-สมบัติของคลื่น
-การสะท้อนของคลื่น
-การหักเหของคลื่น
-การแทรกสอดของคลื่น
-คลื่นนิ่ง
-การสั่นพ้อง
-การเลี้ยวเบนของคลื่น

สมบัติของคลื่น






คุณสมบัติ พื้นฐานของ คลื่น ต่างๆ    สามารถ พิจารณา ได้    4   ประการ ซึ่งมี
               1.   การสะท้อนกลับ ( Reflection )
               2.    การหักเห (Refraction)
               3.    การแพร่กระจายคลื่น (Diffraction )
               4.    การแทรกสอดของคลื่น ( Interference )



การสะท้อนกลับ( Reflection )


การหักเห (Refraction)


การแพร่กระจายคลื่น (Diffraction )


การแทรกสอดของคลื่น ( Interference )
รูปที่    1    แสดงคุณสมบัติพื้นฐานของคลื่น ( 4 ลักษณะ)

1. การสะท้อนของคลื่น          การสะท้อนของคลื่นหมายถึง   การเปลี่ยนทิศทางการเดินทางของคลื่นโดยทันทีทันใดเมื่อคลื่นนั้นเดินทาง ตกกระทบที่ผิวของตัวกลาง    นั่นคือ คลื่นกระดอนออกจากผิวสะท้อน ของตัวกลาง ในลักษณะเดียวกับแสงสะท้อนจากกระจกเงา      จากรูปที่    2    แสดงปรากฎการณ์ ของการสะท้อนของคลื่นวิทยุ   สังเกตได้ว่ามุมตกกระทบเท่ากับมุมสะท้อน

รูปที่    2    การสะท้อนของคลื่นวิทยุ

          ลักษณะการสะท้อนกลับของคลื่น    สามารถ แสดง ลำดับ การ ที่คลื่น ตกกระทบ พื้นผิว ของ ตัวกลาง และ สะท้อน จาก พื้นผิว ของ ตัวกลาง ได้ ดังภาพ



2. การหักเหของคลื่น          การหักเหของคลื่นวิทยุเกิดขึ้นเมื่อคลื่นวิทยุเดินทางจากตัวกลางหนึ่ง ไปยังอีกตัวกลางหนึ่งที่มีคุณสมบัติทางไฟฟ้าไม่เหมือนกัน โดยที่มุมตกกระทบ ณ ตัวกลางที่สองไม่เป็นมุมฉาก พลังงานคลื่นส่วนหนึ่งจะสะท้อนกลับเข้าไปยังตัวกลางที่หนึ่ง โดยมีมุมตกเท่ากับมุมสะท้อน แต่ยังมีพลังงานคลื่นอีกส่วนหนึ่งเดินทางเข้าไปยังตัวกลางที่สอง การเดินทางเข้าไปยังตัวกลางที่สองนี้ จะไม่เป็นแนวเส้นตรงต่อไปจากแนวทางเดินในด้านตัวกลางแรก แต่จะหักเหออกไปมากน้อยขึ้นอยู่กับคุณสมบัติทางไฟฟ้าของตัวกลางทั้งสอง สาเหตุที่เกิดการหักเหของทางเดินของคลื่นวิทยุ เนื่องจาก ความเร็วของคลื่นวิทยุในตัวกลาง ที่มีคุณสมบัติทางไฟฟ้าแตกต่างกันจะไม่เท่ากัน เช่น คลื่นวิทยุจะเดินทางในน้ำบริสุทธิ์จะช้ากว่าเดินทางในอากาศถึง 9 เท่า เป็นต้น
รูปที่    3    การหักหของคลื่นวิทยุ

          จากรูปที่ 3 จะเห็นได้ว่าเมื่อหน้าคลื่น (wave front ) ตกกระทบพื้นผิวระหว่าง ตัวกลางทั้งสองนั้น ส่วนของคลื่นที่สัมผัสผิวน้ำ ก็จะเริ่มเดินทางเข้าไปในน้ำ ด้วยความเร็วช้าลง ในขณะที่หน้าคลื่นอีกส่วนหนึ่งยังคงอยู่ในอากาศ จะเดินทางเร็วกว่า    ตัวอย่างคลื่นที่ใช้ติดต่อสื่อสารที่อาศัยการหักเหของคลื่น คือ การสื่อสารในย่านความถี่สูง ( HF ) ซึ่งอาศัยเพดานไฟฟ้า IONOSPHERE เมื่อคลื่นวิทยุเดินทางจากพื้นโลกผ่านเข้าไปยังเพดานไฟฟ้า ลำคลื่นจะค่อย ๆ หักเหไปเรื่อย ๆ จนในที่สุดคลื่นก็จะกลับออกมาจากเพดาน ไฟฟ้าและกลับมายัง พื้นโลกอีก
           ลักษณะการหักเหของคลื่น สามารถแสดงลำดับการที่คลื่นเคลื่อนที่ จากตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่งเป็นลำดับๆ ได้ดังภาพ



3. การแพร่กระจายคลื่น          การแพร่กระจายคลื่น มีชื่อเรียก ได้ต่างๆกัน ไป เช่น การ เลี้ยวเบน ของ คลื่น หรือ การ เบี่ยงเบน ของ คลื่น การ เบี่ยงเบน ของ คลื่น เกิดขึ้น เมื่อ คลื่น เดินทาง ผ่าน มุม หรือ ขอบ ของ ตัวกลาง ทึบ ที่ คลื่น นั้น ไม่ สามารถ ผ่านได้ เช่น คลื่น วิทยุ ความถี่ สูงมาก เดินผ่าน ยอดเขา คลื่นนี้ มี คุณสมบัติ เดินทาง เป็น เส้นตรง ดังนั้น ถ้าเรา ลาก เส้นตรง จาก สายอากาศ ไปยัง ยอดเขา ส่วนที่ อยู่ หลัง ยอดเขา และ ต่ำกว่า เส้นนี้ ลงมา ไม่ ควร ที่จะ ได้รับ คลื่น ได้เลย แต่ บางส่วน ที่ อยู่ หลัง ยอดเขา สามารถ รับ คลื่นวิทยุ ย่าน ความถี่ สูง ได้ เนื่องจาก ความถี่สูง ขึ้น การ เบี่ยงเบน ของ คลื่น ก็ยิ่ง ลดลง กล่าวคือ คลื่น จะ เดินทาง เป็น แนว เส้นตรง แต่ บางส่วน ของ คลื่น เกิดการ กระทบ กับ สลิตแคบๆ (ยอดเขา) ทำให้ คลื่น เกิดการ แตกกระจาย ออกไป โดยรอบ เสมือนกับ เป็น แหล่ง กำเนิด คลื่น ใหม่ นั่นเอง ดังรูป ที่ แสดง คลื่น ผ่าน ช่องสลิต ที่แคบ โดย มี หลักการ ดังที่ ได้ กล่าวไป ข้างต้น

           จากรูปที่    4    แสดง คุณสมบัติ การ เบี่ยงเบน ของ คลื่น วิทยุ เมื่อ เดินทาง ไป ยัง ตัวกลาง ที่ ทึบ และ เฉียด ขอบ ดังกล่าว   จะเห็นได้ว่า บริเวณ บางส่วน หลัง ตัวกลาง นั้น ที่ เป็น เขต เบี่ยงเบน ซึ่ง สามารถ ติดต่อ สื่อสาร ได้ และ บริเวณ บางส่วน ที่ จะ ติดต่อ สื่อสาร กัน ไม่ได้เลย เรียกว่า เขตเงา (SHADOW)

รูปที่    4    การเบี่ยงเบนของคลื่นวิทยุ


4. การแทรกสอดของคลื่น          การแทรกสอด ของ คลื่น เรื่องนี้ เกี่ยวข้องกับ คุณสมบัติ ทาง optical ของ คลื่น แม่เหล็ก ไฟฟ้า    เรา พิจารณา เรื่อง Interference ต่อไป สิ่งนี้ เกิดขึ้น เมื่อ    2    คลื่น ที่ ออกจาก แหล่ง จ่าย อันเดียว และ เดินทาง มา ด้วย เส้นทาง ที่ ต่างกัน มาถึง จุด หนึ่ง พร้อมกัน สิ่งนี้ เกิดขึ้น บ่อยมาก ในการ เดินทาง ของ    High - frequency Sky - Wave propagation    และใน    Microwave space - wave propagation   ( กรณี ของ แบบนี้ จะ อธิบาย ใน หัวข้อนี้ ) มันเกิดขึ้น เมื่อ สายอากาศ ของ ไมโครเวฟ ถูก ตั้ง อยู ่ใกล้กับ พื้นดิน และ คลื่นที่ มา ถึง จุดรับ ไม่ใช่ เพียง จาก ทิศทางตรง แต่ เป็น คลื่นที่ หลังจาก สะท้อน จาก พื้นดิน ด้วย ดังแสดง ในรูปที่    5
รูปที่    5    การ Interference ของ direct rays และ ground - reflected rays

           จากรูปที่    5    จะเห็นได้ว่า เส้นทางของคลื่นตรง ( Direct ray ) สั้นกว่า เส้นทาง จาก การ สะท้อน ( Reflected ray ) สำหรับ บางครั้ง การ รวมกัน ของ ความถี่ และ ความสูง ของ สายอากาศ เหนือ พื้นโลก ความ แตกต่าง ระหว่าง เส้นทาง    Direct    ray    1    กับ    Reflected    ray    1 เท่ากับ ประมาณ ครึ่ง ความยาวคลื่น สิ่งนี้ จะเป็น การหักล้าง อย่าง สมบูรณ์ ณ จุดรับ P ถ้า พื้นโลก เป็นตัวสะท้อนที่สมบูรณ์ และหักล้างกันบางส่วนสำหรับพื้นโลกที่ไม่สมบูรณ์ ส่วนจุดรับอื่น ๆ (P ) ด้วยเหตุที่เส้นทางแตกต่างระหว่าง Direct    ray    2    กับ   Reflected    ray    2    มีค่าเท่ากับหนึ่งความยาวคลื่นพอดี ในกรณีนี้การเสริมกันของคลื่นที่รับได้จะเกิดขึ้น ณ จุดนี้ และจะเป็นเฉพาะบางส่วนหรือทั้งหมด ขึ้นอยู่กับความสามารถการสะท้อนของพื้นโลก การเกิดอย่างต่อเนื่องของจุดนี้มากกว่าหนึ่งอัน ที่จุดอื่น ๆ อาจพบได้อีก จะได้เป็น Interference Pattern ขึ้น ซึ่งประกอบด้วยจุดหักล้างกัน ( concellation ) และจุดเสริมกัน( Reinforcement ) สลับกัน Pattern ของรูปแบบดังกล่าวนี้ แสดงดังรูปที่ 6

รูปที่    6    Radiation Pattern with interference

          กราฟจากรูปที่    6    คือ จุดต่อกันของ Electric intensity ที่เท่า ๆ กัน pattern นี้เกิดขึ้นโดยสายอากาศ ณ จุดความสูงจากพื้นโลกประมาณ 1 ความยาวคลื่น ด้วยการสะท้อนจากพื้นโลก ( ถือว่าเป็นแผ่นระนาบและตัวนำที่สมบูรณ์ ) ทำให้เกิดการสอดแทรก    Pattern    ดังแสดง    อาจคำนวณหรือพล็อดได้จากการวัด Field - Strengh อย่างถูกต้อง "Flower petals" ( กลีบดอกไม้ ) ของ pattern นี้ เรียกว่า Lobes ซึ่งตรงจุดที่เสริมกัน ดังเช่นจุด    q    ของรูปที่ผ่านมา ขณะที่ Nulls ระหว่าง Lobes ตรงกับจุดที่ หักล้างกัน เช่นจุด    P    ของรูปที่    5
           การแทรกสอดแบบนี้ สามารถ อธิบาย ได้โดยการที่คลื่นผ่านช่องสลิตเล็กๆ 2 ช่องที่ใกล้เคียงกัน คลื่นที่ผ่านสลิตนี้จะทำให้เกิดแหล่งกำเนิดคลื่นขึ้นมาใหม่ จำนวน 2 แหล่งด้วยกัน   ดังนั้นจากหลักการพื้นฐานที่ทราบกันว่า คลื่นเคลื่อนที่เป็นวงกลมรอบๆแหล่งกำเนิด จึงทำให้คลื่นที่ผ่านสลิตแคบๆมีลักษณะเป็นวงกลมด้วย   เมื่อมีแหล่งกำเนิด 2 แหล่ง ที่ใกล้เคียงกันดังนั้นจึงทำให้เกิดการแทรกสอดของ คลื่นได้เช่นกัน   ดังแสดงตัวอย่างดังรูป



คุณสมบัติอื่นๆที่เกิดขึ้นกับคลื่น

          การถูกดูดกลืน ( ABSORPTION )    เมื่อคลื่นวิทยุเดินผ่านตัวกลาง พลังงานส่วนหนึ่งจะสูญเสียไปในลักษณะที่กลายเป็นความร้อนเรียกว่า คลื่นวิทยุถูกดูดกลืนโดยตัวกลาง   ตัวกลางนั้นไม่ว่าจะเป็นตัวนำ หรือมีภาพเป็นตัวต้านทานต่อคลื่นวิทยุ   อาคารตึก   และสิ่งก่อสร้างต่าง ๆ บนพื้นโลก   อุณหภูมิของอากาศ   น้ำ   และฝุ่นละออง ซึ่งประกอบกันเป็นชั้นบรรยากาศ   สามารถเป็นตัวดูดกลืนพลังงานได้ทั้งสิ้น
           การกระจัดการกระจาย ( SCATTERING )  เมื่อคลื่นเดินทางตกกระทบบนตัวกลางที่รวมกันเป็นกลุ่ม   พลังงานส่วนหนึ่งจะสะท้อนออกมา และบางส่วนเดินทางหักเหเข้าไปในตัวกลาง   ส่วนหนึ่งของพลังงานที่เข้าไปในตัวกลางจะถูกดูดกลืนแปลงรูปเป็นความร้อน และมี อีก ส่วนหนึ่งถูกตัวกลางคายออกมาอีกในรูปของการกระจายพลังงานคลื่น   เนื่องจากคลื่นที่กระจายออกมานี้ไม่ค่อยเป็นระเบียบเราจึงเรียกว่า  คลื่นกระจัดกระจาย   การกระจัดกระจายของคลื่นนี้ บางครั้งก็นำมาใช้ประโยชน์ได้เช่น ในระบบการสื่อสารที่เรียกว่า   TROPOSPHERIC   SCATTER ซึ่งอาศัยการกระจัดกระจายของคลื่นวิทยุจากกลุ่มอากาศที่หนาแน่นในชั้นบรรยากาศ   TROPOSPHERE ซึ่งอยู่ห่างจากผิวโลกประมาณ 10 กิโลเมตร   ในบางครั้งการกระจัดกระจายของคลื่นก็มีผลเสียเช่น   การสื่อสารย่านความถี่ไมโครเวฟ เมื่อคลื่นตกกระทบเม็ดฝนจะทำให้คลื่นเกิดการสูญเสียเป็นผลจากการกระจัดกระจาย และการหักเหทำให้คลื่นไม่สามารถเดินทางไปยังปลายทางได้หมด
           การลดทอนพลังงาน (ATTENUATION)ของคลื่น จะมีความหมายหรือสาเหตุคล้ายคลึงกับการถูกดูดกลืน   คือการลดทอนพลังงานคลื่นอันเนื่องมาจากการถ่างออกของลำคลื่นวิทยุในลักษณะที่คล้ายคลึงกับการถ่างออกของลำแสงไฟฉายปรากฎการณ์เช่นนี้จะทำให้ ความเข้มของพลังงานคลื่นวิทยุต่อหนึ่งหน่วยพื้นที่ลดลงไปเรื่อยๆ เมื่อคลื่นเดินทางห่างจากจุดกำเนิดออกไปถ้าแหล่งกำเนิดคลื่นมีลักษณะที่สามารถกระจายคลื่นได้ทุกทิศทางรอบตัวหรือเรียกว่า   ISOTROPIC ANTENNA    นั้น คลื่นที่ถูกสร้างขึ้น จะลดความเข้มลงไปเรื่อย ๆ เมื่อคลื่นเดินทางห่างออกไป โดยความเข้มจะแปรกลับ กับระยะทางกำลังสองนั่นเอง